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Abstract—The 1771 Yaeyama tsunami is successfully reproduced using a simple faulting model

without submarine landslide. The Yaeyama tsunami (M 7.4), which struck the southern Ryukyu Islands of

Japan, produced unusually high tsunami amplitudes on the southeastern coast of Ishigaki Island and

caused significant damage, including 12,000 casualties. Previous tsunami source models for this event have

included both seismological faults and submarine landslides. However, no evidence of landslides in the

source has been obtained, despite marine surveying of the area. The seismological fault model proposed in

this study, describing a fault to the east of Ishigaki Island, successfully reproduces the distribution of

tsunami runup on the southern coast of the Ryukyu Islands. The unusual runup heights are found through

the numerical simulation attributable to a concentration of tsunami energy toward the southeastern coast

of Ishigaki Island by the effect of the shelf to the east. Thus, the unusual runup heights observed on the

southeastern coast of Ishigaki Island can be adequately explained by a seismological fault model with

wave-ray bending on the adjacent shelf.

Key words: The 1771 Yaeyama tsunami, Ryukyu Islands, tsunami generation.

1. Introduction

On April 24, 1771, a large earthquake (the Yaeyama earthquake tsunami, M 7.4)

struck the southern Ryukyu Islands (Fig. 1). The main shock was widely felt

throughout the Ryukyu Islands exceeding 350 km from the epicenter. Later large

tsunami struck the same area, reaching a maximum height exceeding 30 m on the

southeastern side of Ishigaki Island (Fig. 1) (NAKATA and KAWANA, 1995). The

damage area was distributed between Ishigaki Island and Miyako Island, resulting in

significant damage and approximately 12,000 casualties.

The source area of the tsunami has been estimated, based on two documented

observations, to have been to the southeast of Ishigaki Island (Fig. 1) (IMAMURA,
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1938; HATORI, 1988). Waves of over 10 m were recorded on the southern coast

between Ishigaki Island and Miyako Island, and the tsunami was reported to surge

from the southeast to strike Ishigaki Island.

Numerous simulations have been conducted for this tsunami, and the source

models employed can be broadly classified into seismological fault models (NAKATA

and KAWANA, 1995), submarine landslide models (HIYOSHI et al., 1986), and fault-

and-landslide models (HIRAISHI et al., 2001; IMAMURA et al., 2001). In the seismo-

logical fault model, the fault is set to the southeast of Ishigaki Island (area A in

Fig. 1), and an earthquake magnitude of M 8 is assumed. However, this model

predicts a maximum runup height of 10 m on the southeast of Ishigaki Island, which

is smaller than the observed runup. The submarine landslide model assumes the

occurrence of a landslide to the south of Ishigaki Island, and reproduces the runup

height on the southeastern side of Ishigaki Island well, with the tsunami energy

concentrated in that area. However, this model cannot successfully reproduce the

runup height observed at Tarama and Miyako Islands. The fault-and-landslide

model, on the other hand, describes both a seismological fault and a submarine

landslide on the southern slope of Ishigaki Island (Fig. 1), and the model reproduces

the runup height at all locations well.

The tsunami simulation using the fault-and-landslide model therefore suggests

the occurrence of a submarine landslide to the southeast of Ishigaki Island (area C in

Fig. 1). In order to verify whether this model is correct, marine surveys have been

Figure 1

Map of the southern Ryukyu Islands. The large ellipsoid (A) denotes the source area of the Yaeyama

tsunami as estimated in previous studies (HATORI, 1998; NAKATA and KAWANA, 1995). Hatched areas (B

and C) denote the locations of the submarine landslide estimated in marine surveys (MATSUMOTO and

KIMURA, 1993; MATSUMOTO et al., 2001) and the previous tsunami simulations (IMAMURA et al., 2001),

respectively. Bars indicate runup heights, and ‘‘F’’ denotes the location of the fault to the east of Ishigaki

Island.
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carried out to the south of Ishigaki Island, and depressions thought to represent

landslides have been identified at 23�550N–24�000N and 124�100E–124�200E (area B)

(MATSUMOTO and KIMURA, 1993; MATSUMOTO et al., 2001). However, the timing of

the landslide cannot be determined. Furthermore, although the simulation requires a

submarine landslide in area C, no evidence of landslides has yet been found in that

area, nor has the fault in the source area.

Figure 2

Profiles of 12 kHz surveys conducted across the fault to the east of Ishigaki Island. Arrows denote the

location of the fault.
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All previous studies have assumed that the tsunami originated on the south slope

of Ishigaki Island. However, a remarkable NW-SE striking fault is located to the east

of Ishigaki Island (HAMAMOTO et al., 1979; RESEARCH GROUP FOR ACTIVE FAULTS

in JAPAN, 1991) (Fig. 2), extending for approximately 50 km with an average vertical

slip of 50–100 m and dip toward the southwest (Fig. 2). As the direction of

extensional stress and strain is parallel to the trench in the area of the southern

Ryukyu Islands (KUBO and FUKUYAMA, 2003; NAKAMURA, 2004), the slip of this

fault is considered to represent normal faulting. Although the timing of the latest

faulting has yet to be determined, the possibility of this fault as the source of the

Yaeyama tsunami has not been discussed, despite being located near the anticipated

source area. In the present study, the tsunami source is reconstructed by numerical

analysis of wave propagation and application of the wave-ray method, and it is

shown that the event can be successfully explained using only a fault model, without

submarine faulting.

2. Simulation Conditions

The numerical simulation performed in this study, including runup along the

coast based on shallow water theory, is compared to the recorded runup heights on

the Islands coasts.

The tsunami propagation is computed using nonlinear shallow-water equations

(e.g., SATAKE, 1995).
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where (M, N) are discharge fluxes, g is the gravitational acceleration, h is water

depth, g the vertical displacement of the water surface above the water level, D is the

total water depth (h +g), and n is Manning’s roughness coefficient (n = 0.025). The

tsunami runup to land area is calculated based on the condition of IWASAKI and

MANO (1979). The open boundary condition is used at the edge of the computational

area.

The area for computation extended from 23�400N to 25�300N, and from 123�400E
to 125�450E. The bathymetry and topography data were gridded at 75 m intervals

over the entire area, and a finer grid interval of 25 m was employed for six areas for

detailed analysis. The bathymetry data were provided by the Japan Ocean Data

Center (JODC), and the topography data were provided by the Geographical
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Institute of Japan. The time interval for computation was 0.1 s. The model was

computed for a wave travel time of two hours.

Three source models were considered, F1, F2, and FL. Model F1 describes a

reverse fault located to the southeast of Ishigaki Island (area A in the Fig. 1),

corresponding to the source area estimated by previous studies (HATORI, 1988;

NAKATA and KAWANA, 1995). The geometry of the fault was set as follows: / = 80�,
d = 70�, k = 90�, L = 66 km, W ¼ 33 km, average slip of 8 m, and seismic moment

of 5.2 · 1020 N/m2 (Mw = 7.8). The top edge of the fault was assumed to reach the

ocean bottom. Ocean bottom displacement, assumed to be responsible for the initial

water surface deformation giving rise to the tsunami, was computed using the

dislocation formula provided by OKADA (1985).

Model F2 describes a normal fault located to the east of Ishigaki Island (Fig. 2),

corresponding to the region of E-W extensional stress and strain in the south of

Ryukyu arc (KUBO and FUKUYAMA, 2003; NAKAMURA, 2004). The fault geometry

was set as follows: /= 135�, d = 70�, k = 270�, L ¼ 50 km, W ¼ 25 km, average

slip of 8 m, and seismic moment of 3.0 · 1020 N/m2 (Mw ¼ 7.6). The top edge of the

fault was assumed to reach the ocean bottom, and ocean bottom displacement was

computed using the dislocation formula provided by OKADA (1985).

Model FL describes both a seismological reverse fault (F1) and a submarine

landslide on the southern slope of Ishigaki Island (area B in the Fig. 1). The location

of the landslide is based on the results of the marine survey (MATSUMOTO and

KIMURA, 1993; MATSUMOTO et al., 2001). The dimensions of the landslide, L ¼ 3 km

and W ¼ 2 km, were estimated from the bathymetry data (Fig. 1), and the thickness

of submarine landslide was set at T= 300 m. The water depth was set at d= 1400 m

at this location, with a slope of h= 25�. Static water-surface deformation estimated

by an empirical formula derived by Grilli and Watts (1999) was employed, with a

maximum ocean bottom displacement of gmax = 52 m.

3. Results and Discussion

3.1 Comparison with Tsunami Heights

Figure 3 shows a comparison between records and the results of the F1 model. The

computed tsunami runup heights are less than 18 m, significant by smaller than the

observed heights, and the maximum simulated runup height which occurred on the

north coast of Ishigaki Island. The runup height on the southeastern coast of Ishigaki

Island, 9 m, is one quarter of the observed runup. The geometric mean (K) and index

of scatter (k) for this comparison (AIDA, 1978) were 1.78 and 1.64, respectively,

suggesting that the computed heights are on average about one half of the observed

values. Thus, the tsunami simulated using the F1 model does not successfully

reproduce the unusual height distribution on the southeastern coast of Ishigaki Island.
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Figure 4 illustrates a comparison for model F2. The computed tsunami heights

reproduce the unusual tsunami heights on the southeastern coast of Ishigaki Island

well, reaching a maximum of 45 m. However, the computed tsunami height is half of

the observed height on the southern coast of Miyako Island. Nevertheless, the

Figure 3

Results of tsunami computations for model F1. (Top) Spatial distribution of simulated maximum water

level. Broken rectangles denote the areas gridded at 25 m intervals. (Bottom) Profile of simulated runup

heights along the coast. Circles denote field-measured runup heights, and arrows delineate where the

tsunami overtopped the island from the south coast to reach the north coast.
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tsunami heights computed using model F2 are closer to the observed heights

compared to model F1. The K and k values for this comparison are 1.02 and 1.31,

respectively, suggesting that the computed heights are similar to the observed values.

Figure 4

Results of tsunami computations for model F2. (Top) Spatial distribution of simulated maximum water

level. Broken rectangles denote the areas gridded at 25 m intervals. (Bottom) Profile of simulated runup

heights along the coast. Circles denote field-measured runup heights, and arrows demarcate where the

tsunami overtopped the island from the south to reach the north coast.
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The tsunami inundation area, which is obtained through the model F2, is widely

distributed at Tarama Island and south of Ishigaki Island (Fig. 5). This corresponds

to the distribution of tsunami boulders, which were carried by the Yaeyama tsunami

or prehistorical tsunamis (KATO et al., 1988; NAKATA and KAWANA, 1995). The

computed inundation area corresponds to the recorded one which is traced using the

historical record, tsunami boulders, and damaged shrines at the south of Ishigaki

Island. The runup heights of the observed tsunami were between 10 m and 30 m at

the south of Ishigaki Island. The tsunami boulders and damaged shrines are located

in the computed inundation area (Fig. 5). The undamaged shrines are located out of

the computed inundation area.

Figure 6 presents the comparison for model FL. The K and k values for this

comparison are 1.21 and 1.90, respectively. The maximum runup height (15 m)

occurs locally on the southwest coast of Ishigaki Island, which is induced by the

concentration of tsunami energy at the southwest of Ishigaki Island (Fig. 6).

Although the landslide model can generate maximum runup height locally, it cannot

reproduce the runup height distribution. Thus the landslide model south of Ishigaki

Island cannot reproduce the recorded maximum runup height distribution.

The average runup heights at F1, F2 and FL are 5 m or less on the north side of

Ishigaki Island, but reach over 10 m locally (sections B-B’, Figs. 3, 4, and 6).

Distribution of the computed inundation area shows that the tsunami overtopped the

island locally in the northeast of Ishigaki Island (top of Fig. 5). The northeast of

Ishigaki Island consists of land-tied islands where islands are connected by sand spits

(less than 10 m in elevation above sea level). The tsunami overtopped the sand spits

and surged to the northwestern coast in the northeast of Ishigaki Island. This is

consistent with the record that the village (10 m in elevation above sea level) on the

sand spit at the northeast of Ishigaki Island was destroyed by the tsunami.

3.2 Unusual Runup on the Southeastern Coast of Ishigaki Island

Figure 7 shows the concentration of tsunami energy on the southeastern coast of

Ishigaki Island, as determined by the wave-ray method using an ellipsoidal source

and bathymetry data. In the case of model F2, the concentration of energy on the

southeast coast of Ishigaki Island is induced by refraction at the shelf to the east. The

Figure 5

(Top) Tsunami inundated area computed by using the model F2. Solid circles show the tsunami boulders

(KATO et al., 1988; KAWANA and NAKATA, 1994; NAKATA and KAWANA, 1995). Arrows signify where the

tsunami overtopped the island from the south to reach the north coast. (Bottom) Tsunami inundation area

and damages on the south of Ishigaki Island. Hatched depicts the inundated area computed by using the

model F2. Solid and open triangles represent the shrines inundated and uninundated by the tsunami,

respectively. Solid circles show the tsunami boulders (KATO et al., 1987; KATO 1988; NAKATA and

KAWANA, 1995). Dashed lines denote the limit of observed inundation of the tsunami (KATO et al., 1987;

NAKATA and KAWANA, 1995).

b
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wave rays also bend on the southern slope, reinforcing the energy concentration on

the southeastern coast of Ishigaki Island. This suggests that the effect of the shelf

contributed strongly to the focusing of the tsunami toward the southeastern coast of

Figure 6

Results of tsunami computations for model FL. (Top) Spatial distribution of simulated maximum water

level. Broken rectangles denote the areas gridded at 25 m intervals. (Bottom) Profile of simulated runup

heights along the coast. Circles denote field-measured runup heights, and arrows indicate where the

tsunami overtopped the island from the south to reach the north coast.
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Figure 7

Pattern of energy radiation from ellipsoidal sources using the wave-ray method (upper: F1; lower: F2).
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Ishigaki Island. In the case of model F1, however, the energy concentration on the

southeastern coast of Ishigaki Island is weak. Consequently, the effect of energy

concentration is strongest for the case of a tsunami originating to the east of Ishigaki

Island. This result suggests that the unusual tsunami runup of the Yaeyama tsunami

is due largely to the concentration of energy by the shelf and not the result of a

submarine landslide.

3.3 Comparison of Seismic Intensity Distribution

The main shock was felt over a distance of 350 km from the epicenter. The

computed peak ground acceleration for the proposed fault model (F2) using the

attenuation relationship (SI and MIDORIKAWA, 1999) is 10 cm/s2 (Japan Meteo-

rological Agency (JMA) intensity of 2) at the epicentral distance of 350 km. This

is consistent with the record that the earthquake was felt at the distance of

350 km.

However, the earthquake damage to the houses has not been recorded

although the tsunami devastation had been recorded at all villages. The computed

peak ground acceleration for the model F2 is 250 cm/s2 (JMA intensity of 5))
and 450–750 cm/s2 (JMA intensity range of 5+ and 6)) at Miyako Island and

Ishigaki Island, respectively. This would have caused the damage in the Ishigaki

Island.

The missing records for the shaking damages might have been generated by the

serious tsunami damage; the earthquake damage would have been obscured by the

tsunami. All villages were distributed close to the shore at the Ishigaki Island to

reduce the risk of malaria epidemics. Therefore the tsunami attacked all the villages

after the earthquake, and caused serious damage to the villages. Since the tsunami

washed away the damaged and undamaged houses after the earthquake, these might

have been only recorded as the tsunami damage.

4. Conclusions

Simulations revealed that a normal-fault earthquake (Mw 7.6) to the east of

Ishigaki Island is the most likely source of the 1771 Yaeyama tsunami. The model

successfully reproduces the concentration of the tsunami energy on the southeastern

coast of Ishigaki Island, and indicates that the unusual runup height on the

southeastern coast was caused by energy concentration on the shelf to the east. Thus,

the unusual runup heights can be explained by a model of seismological faulting

without a submarine landslide.
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